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Abstract. We examine the effect of the different spatial widths of successive subbands on the
calculation of the single-particle relaxation and scattering times when up to two subbands
are occupied. It is shown that, firstly, the single-particle relaxation time for the second
subband is always larger (by a factor of two or more) than that for the ground subband and,
secondly, the scattering time for the second subband is sometimes larger and sometimes
smaller than that for the ground subband (depending on the electron concentration in the
second subband) in qualitative agreement with recent experimental data.

1. Introduction

When an electronin a momentum eigenstate is subjected to scattering mechanisms there
are two time constants that are significant. The first is the single-particle relaxation time
which is ameasure of the lifetime of the state as aresult of all possible transitions. It can be
determined experimentally from the amplitude of the Shubnikov—de Haas oscillations
(Fang et al 1988). The second time constant is the scattering time (or the transport time)
which determines how fast the momentum is dissipated by those transitions that are
effective in changing momentum. It can be obtained experimentally from the mobility

u through the relation
=er /m" (1)

where e and m™ are the magnitude of the electron charge and effective mass respectively.

There has been a great deal of discussion recently about the relationship between
the scattering times 7, and the single-particle relaxation times t, when two subbands are
occupied in a modulation doped GaAs/GaAlAs heterojunction. Such occupation may
occur at high temperatures or high concentrations of carriers. It leads to two important
effects. Firstly the transport involves an intersubband scattering mechanism which
decreases tyand 1, for the first subband when the second begins to be occupied. Secondly
the screening of the scattering potentials includes corntributions from all the occupied
subbands (Stern 1978).

Experimental data (Fang er al 1988, Van Houten ez al 1988, Smith et a/ 1988, Smith
and Fang 1988) indicated that 7, for the second subband (z,,) is always larger than that
for the first subband (7;) and that the scattering time for the first subband r,; is sometimes
larger and sometimes smaller than the corresponding quantity for the second subband
T,,. This is in contradiction to previous theoretical calculations (Mori and Ando 1980)
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and experimental results (Stormer er al 1982, Englert er a/ 1983) which indicate that 7,
is always smaller than t,;. The observed difference of behaviour between the two times
raises a number of problems. A possible answer to these problems lies in the larger
spatial width of the second subband which in some cases is up to three times that of the
firstsubband (Ando 1982). The increased width increases the second-subband scattering
times considerably when the spacer layer is much smaller than the width of the first
subband.

In this paper we calculate the effect on 7, and 7, of the occupation of the second
subband using the multisubband transport theory of Siggia and Kwok (1970) and taking
into account the difference of the spatial widths of the subband wavefunction.

2. Poisson’s equation

Following the approach of Stern and Howard (1967) we use the two-dimensionally
Fourier transformed Poisson equation for an ionised impurity of charge eat z = zywhere
the Cartesian coordinate z is measured perpendicular to the plane of the 2DEG. We write
x and y for the Cartesian coordinates in the plane of the 2DEG and we assume that the
permittivity is independent of x and y. Thus we obtain

d*A(g, 2) - de(z)dA(q, 2)

e . A= 27e8(2) 0i0?) @

where £(z) is the permittivity at the position z. In equation (2) A(q, z) and p;,q are the
two-dimensional Fourier transforms of the potential and the induced charge density. In
alinear screening approximation and neglecting intersubband coupling (Stern 1978) we

have

-

Pina(q,2) = = 2 Bi(9)8:(2)A(9) _ (3)

where i labels the subbands and Biq) and g(z) are the dielectric function and the
normalised charge density for this subband respectively. Finally

A= [ A4z )
By solving equation (2) and using equations (3) and (4) we obtain for A,

Ai(g) = —ZZejm G(z,z')gi(z)dz (5)

+36@A) [ [ Ge () dzdz
j=1 —w " —m

where G(z, ') is the Green function for equation (2). Assuming now that we have the
same dielectric constant everywhere in our material so that £(z) = €, a constant, the
Green function G(z, z') is (Morse and Feshbach 1953) :

G(z,z') = (—1/2eq) e ~9l==d (6)

.






